Human Performance with Complex Technology: How Visual Cognition Is Critical to Enhanced Performance with Aided Target Recognition (AiTR)

  • Gabriella Brick LarkinEmail author
  • Michael N. Geuss
  • Alfred Yu
  • Chloe Callahan-Flintoft
  • Joe Rexwinkle
  • Chou P. Hung
  • Brent J. Lance
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1201)


手机体育投注平台Technology advances in artificial intelligence (AI) and augmented or mixed reality (AR) offer the potential for advanced performance capabilities in the military and commercial sectors. However, the impact of utilizing such technology on users’ normative perceptual, attentional, and higher-level cognitive processes is not well understood. To take full advantage of current and future technological advancements, systems designers for the Army must better understand how human visual cognition changes in the face of the novel visual stimuli provided by these technologies. Here, we present an approach anchored in foundational cognitive research to derive principles for how humans understand, interact with, and are cognitively altered by the interactions between AI and AR. We will discuss our approach in the context of a specific application, Aided Target Recognition (AiTR). We will discuss a series of planned research efforts, the foundational findings supporting these efforts, and their potential implications for AiTR development.


Applied perception Augmented reality Visual cognition AiTR 


  1. 1.
    Larkin, G.B., Geuss, M., Yu, A., Rexwinkle, J., Callahan-Flintoft, C., Bakdash, J., Swoboda, J., Lieberman, G., Hung, C.P., Moore, S., Lance, B.J.: Augmented target recognition display recommendations. J. Defense Syst. Inf. Anal. Center Winter 2020. (in press)
  2. 2.
    Haberman, J., Whitney, D.: Ensemble perception: summarizing the scene and broadening the limits of visual processing. From Perception to Consciousness: Searching with Anne Treisman, pp. 339–349 (2012)
  3. 3.
    Balas, B., Nakano, L., Rosenholtz, R.: A summary-statistic representation in peripheral vision explains visual crowding. J. Vis. 9(12), 13 (2009)
  4. 4.
    Alvarez, G.A., Oliva, A.: Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proc. Natl. Acad. Sci. 106(18), 7345–7350 (2009)
  5. 5.
    Geisler, W.S.: Visual perception and the statistical properties of natural scenes. Ann. Rev. Psychol. 59, 167–192 (2008)
  6. 6.
    Groen, I.I., Silson, E.H., Baker, C.I.: Contributions of low-and high-level properties to neural processing of visual scenes in the human brain. Phil. Trans. Roy. Soc. B Biol. Sci. 372(1714), 20160102 (2017)
  7. 7.
    Geisler, W.S., Diehl, R.L.: Bayesian natural selection and the evolution of perceptual systems. Phil. Trans. Roy. Soc. Lond. Ser. B Biol. Sci. 357(1420), 419–448 (2002)
  8. 8.
    Hung, C.P., Cui, D., Chen, Y.P., Lin, C.P., Levine, M.R.: Correlated activity supports efficient cortical processing. Front. Comput. Neurosci. 8, 171 (2015)
  9. 9.
    Haberman, J., Whitney, D.: Rapid extraction of mean emotion and gender from sets of faces. Curr. Biol. 17(17), R751–R753 (2007)
  10. 10.
    Haberman, J., Whitney, D.: Seeing the mean: ensemble coding for sets of faces. J. Exp. Psychol. Hum. Percept. Perform. 35(3), 718 (2009)
  11. 11.
    Baddeley, R., Abbott, L.F., Booth, M.C., Sengpiel, F., Freeman, T., Wakeman, E.A., Rolls, E.T.: Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 264(1389), 1775–1783 (1997)
  12. 12.
    De Cesarei, A., Loftus, G.R., Mastria, S., Codispoti, M.: Understanding natural scenes: contributions of image statistics. Neurosci. Biobehav. Rev. 74, 44–57 (2017)
  13. 13.
    Dima, D.C., Perry, G., Singh, K.D.: Spatial frequency supports the emergence of categorical representations in visual cortex during natural scene perception. NeuroImage 179, 102–116 (2018)
  14. 14.
    Gaspelin, N., Leonard, C.J., Luck, S.J.: Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychol. Sci. 26(11), 1740–1750 (2015)
  15. 15.
    Geuss, M.N., Larkin, G., Swoboda, J., Yu, A., Bakdash, J., White, T., Lance, B.: Intelligent squad weapon: challenges to displaying and interacting with artificial intelligence in small arms weapon systems. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 11006, p. 110060 V (2019). International Society for Optics and Photonics
  16. 16.
    Gaspelin, N., Luck, S.J.: The role of inhibition in avoiding distraction by salient stimuli. Trends Cogn. Sci. 22(1), 79–92 (2018)
  17. 17.
    Wyble, B., Callahan-Flintoft, C., Chen, H., Marinov, T., Sarkar, A., Bowman, H.: Understanding visual attention with RAGNAROC: a reflexive attention gradient through neural AttRactOr Competition. bioRxiv 406124 (2018)
  18. 18.
    Müller, M.M., Gundlach, C., Forschack, N., Brummerloh, B.: It takes two to tango: Suppression of task-irrelevant features requires (spatial) competition. NeuroImage 178, 485 (2018)
  19. 19.
    Chen, J.Y.: Concurrent performance of military tasks and robotics tasks: effects of automation unreliability and individual differences. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, pp. 181–188. ACM (209)
  20. 20.
    Friedman, J.A., Baker, J.D., Mellers, B.A., Tetlock, P.E., Zeckhauser, R.: The value of precision in probability assessment: evidence from a large-scale geopolitical forecasting tournament. Int. Stud. Q. 62(2), 410–422 (2018)
  21. 21.
    Gonzalez, R., Wu, G.: On the shape of the probability weighting function. Cogn. Psychol. 38(1), 129–166 (1999)
  22. 22.
    Lipkus, I.M., Samsa, G., Rimer, B.K.: General performance on a numeracy scale among highly educated samples. Med. Decis. Mak. 21(1), 37–44 (2001)
  23. 23.
    Brunyé, T.T., Gardony, A.L.: Eye tracking measures of uncertainty during perceptual decision making. Int. J. Psychophysiol. 120, 60–68 (2017)
  24. 24.
    Kietzmann, T.C., König, P.: Effects of contextual information and stimulus ambiguity on overt visual sampling behavior. Vision. Res. 110(Part A), 76–86 (2015)
  25. 25.
    Nuthmann, A.: Fixation durations in scene viewing: modeling the effects of local image features, oculomotor parameters, and task. Psycho. Bull. Rev. 24(2), 370–392 (2017)
  26. 26.
    Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)
  27. 27.
    Owens, D.A., Antonoff, R.J., Francis, E.L.: Biological motion and nighttime pedestrian conspicuity. Hum. Factors 36(4), 718–732 (1994)
  28. 28.
    Yu, A.B., Zacks, J.M.: How are bodies special? effects of body features on spatial reasoning. Q. J. Exp. Psychol. 69(6), 1210–1226 (2015)
  29. 29.
    Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: Deepercut: adeeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016, Lecture Notes in Computer Science, vol 9910. Springer, Cham (2016)
  30. 30.
    Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Gabriella Brick Larkin
    • 1
    Email author
  • Michael N. Geuss
    • 1
  • Alfred Yu
    • 1
  • Chloe Callahan-Flintoft
    • 1
  • Joe Rexwinkle
    • 1
  • Chou P. Hung
    • 1
  • Brent J. Lance
    • 1
  1. 1.Combat Capabilities Development Command Army Research Laboratory, Human Research and Engineering DirectorateAberdeen Proving GroundUSA

Personalised recommendations