手机体育投注平台

Advertisement

A Review on Applications of Soft Computing Techniques in Neuroergonomics During the Last Decade

  • Erman ÇakıtEmail author
  • Waldemar Karwowski
Conference paper
  • 342 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1201)

Abstract

Soft computing (SC) methods play an important role in addressing the different types of problems and offering potential alternatives at the present time. Such methods have also been implemented in the context of neuroergonomics, because of the success of SC strategies, to reliably evaluate the mental workload and achieve better results than traditional approaches. Nevertheless, these applications are still limited. This paper surveys SC techniques using classification and literature review of articles for the last decade (2009–2019) to explore how various SC methodologies have been developed during this period. The purpose of this paper is to summarize the results through a systemic review of current research papers on the use of SC methodologies in neuroergonomics. Throughout the course of this study, it has been observed that SC techniques have been applied to most traditional areas of neuroergonomics research, and research in neuroergonomics has grown in recent years.

Keywords

Neuroergonomics Soft computing Review 

References

  1. 1.
    Parasuraman, R., Rizzo, M. (eds.): Neuroergonomics: The Brain at Work, vol. 3. Oxford University Press, New York (2008)
  2. 2.
    Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. Wiley, New York (1997)
  3. 3.
    Parasuraman, R., Hancock, P.A.: Adaptive control of mental workload. In: Hancock, P.A., Desmond, P.A. (eds.) Stress, Workload, and Fatigue, pp. 305–333. Lawrence Erlbau, Mahwah (2001)
  4. 4.
    Ayaz, H., Dehais, F.: Neuroergonomics: The Brain at Work and Everyday Life, 1st edn. Elsevier, Academic Press, Cambridge (2019)
  5. 5.
    Kum, S., Furusho, M., Duru, O., Satir, T.: Mental workload of the VTS operators by utilising heart rate. Trans. Nav. 1(2), 145–151 (2007)
  6. 6.
    Nachreiner, F.: Standards for ergonomics principles relating to the design of work systems and to mental workload. Appl. Ergon. 26(4), 259–263 (1995)
  7. 7.
    Moray, N.: Mental workload since 1979. Int. Rev. Ergon. 2, 123–150 (1988)
  8. 8.
    Liang, G.F., Lin, J.T., Hwang, S.L., Huang, F.H., Yenn, T.C., Hsu, C.C.: Evaluation and prediction of on-line maintenance workload in nuclear power plant. Hum. Fact. Ergon. Manuf. 19(1), 64–77 (2009)
  9. 9.
    Wu, Y., Liu, Z., Jia, M., Tran, C.C., Yan, S.: Using artificial neural networks for predicting mental workload in nuclear power plants based on eye tracking. Nucl. Technol. 206(1), 94–106 (2020)
  10. 10.
    Yan, S., Wei, Y., Tran, C.C.: Evaluation and prediction mental workload in user interface of maritime operations using eye response. Int. J. Ind. Ergon. 71, 117–127 (2019)
  11. 11.
    Yan, S., Tran, C.C., Wei, Y., Habiyaremye, J.L.: Driver’s mental workload prediction model based on physiological indices. Int. J. occup. Saf. Ergon. 25(3), 476–484 (2019)
  12. 12.
    Chen, Y., Yan, S., Tran, C.C.: Comprehensive evaluation method for user interface design in nuclear power plant based on mental workload. Nucl. Eng. Technol. 51(2), 453–462 (2019)
  13. 13.
    Yong, D.: Subjective mental workload assessment based on generalized fuzzy numbers. Cybern. Syst. Int. J. 42(4), 246–263 (2011)
  14. 14.
    Saadati, M., Nelson, J., Ayaz, H.: Mental workload classification from spatial representation of FNIRS recordings using convolutional neural networks. In: 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2019)
  15. 15.
    Saadati, M., Nelson, J., Ayaz, H.: Convolutional neural network for hybrid fNIRS-EEG mental workload classification. In: International Conference on Applied Human Factors and Ergonomics, pp. 221–232. Springer, Cham (2019)
  16. 16.
    Liu, Y., Ayaz, H., Shewokis, P.A.: Multisubject “learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures. Frontiers Hum. Neurosci. 11, 389 (2017)
  17. 17.
    Elkin, C., Devabhaktuni, V.: Comparative analysis of machine learning techniques in assessing cognitive workload. In: International Conference on Applied Human Factors and Ergonomics, pp. 185–195. Springer, Cham (2019)
  18. 18.
    Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint (2015)
  19. 19.
    Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)
  20. 20.
    Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., Choi, J.W.: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: three-class classification of rest, right-, and left-hand motor execution. Neurophotonics 5(1), 011008 (2017)
  21. 21.
    Hong, K.S., Naseer, N., Kim, Y.H.: Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI. Neurosci. Lett. 587, 87–92 (2015)
  22. 22.
    Samima, S., Sarma, M.: EEG-based mental workload estimation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5605–5608. IEEE (2019)
  23. 23.
    Zhang, P., Wang, X., Chen, J., You, W., Zhang, W.: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 27(6), 1149–1159 (2019)
  24. 24.
    Zhang, Y., Shen, Y.: Parallel mechanism of spectral feature-enhanced maps in EEG-based cognitive workload classification. Sensors 19(4), 808 (2019)
  25. 25.
    Zhang, P., Wang, X., Zhang, W., Chen, J.: Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 27(1), 31–42 (2018)
  26. 26.
    Islam, M.R., Barua, S., Ahmed, M.U., Begum, S., Di Flumeri, G.: Deep learning for automatic EEG feature extraction: an application in drivers’ mental workload classification. In: International Symposium on Human Mental Workload: Models and Applications, pp. 121–135. Springer, Cham (2019)
  27. 27.
    Aghajani, H., Garbey, M., Omurtag, A.: Measuring mental workload with EEG + fNIRS. Frontiers Hum. Neurosci. 11, 359 (2017)
  28. 28.
    Lee, M.H., Fazli, S., Mehnert, J., Lee, S.W.: Hybrid brain-computer interface based on EEG and NIRS modalities. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI), pp. 1–2. IEEE (2014)
  29. 29.
    Gu, H., Yin, Z., Zhang, J.: EEG based mental workload assessment via a hybrid classifier of extreme learning machine and support vector machine. In: 2019 Chinese Control Conference (CCC), pp. 8398–8403. IEEE (2019)
  30. 30.
    Ting, P.H., Hwang, J.R., Doong, J.L., Jeng, M.C.: Driver fatigue and highway driving: a simulator study. Physiol. Behav. 94(3), 448–453 (2018)
  31. 31.
    Liu, Y.T., Lin, Y.Y., Wu, S.L., Hsieh, T.Y., Lin, C.T.: Assessment of mental fatigue: an EEG-based forecasting system for driving safety. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3233–3238. IEEE (2015)
  32. 32.
    Ed-doughmi, Y., Idrissi, N.: Driver fatigue detection using recurrent neural networks. In: Proceedings of the 2nd International Conference on Networking, Information Systems & Security, pp. 1–6 (2019)
  33. 33.
    Chai, R., Tran, Y., Craig, A., Ling, S.H., Nguyen, H.T.: Enhancing accuracy of mental fatigue classification using advanced computational intelligence in an electroencephalography system. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1341. IEEE (2014)
  34. 34.
    Warm, J.S.: The psychophysics of vigilance. In: Proceedings of the Human Factors Society Annual Meeting, vol. 24, no. 1, p. 605. SAGE Publications, Los Angeles (1980)
  35. 35.
    Wu, W., Wu, Q.J., Sun, W., Yang, Y., Yuan, X., Zheng, W.L., Lu, B.L.: A regression method with subnetwork neurons for vigilance estimation using EOG and EEG. IEEE Trans. Cogn. Dev. Syst. (2018)
  36. 36.
    Rigane, O., Abbes, K., Abdelmoula, C., Masmoudi, M.: A fuzzy based method for driver drowsiness detection. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 143–147. IEEE (2017)

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Industrial EngineeringGazi UniversityAnkaraTurkey
  2. 2.Department of Industrial Engineering and Management SystemsUniversity of Central FloridaOrlandoUSA

Personalised recommendations