手机体育投注平台

Advertisement

Introduction

Chapter
  • 4 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

手机体育投注平台In modern societies, reliable and sustainable operation of certain infrastructures plays a fundamental role in the quality of individual life, economic development and security of nations. Large-scale critical infrastructure systems, especially those located in urban areas, such as water distribution networks (WDNs) and smart grids (SGs), are a subject of increasing concern. Therefore, it is of vital importance to develop management systems that guarantee a reliable and sustainable operation of these infrastructures. On the other hand, for the management of these infrastructures, it is also significant that their operation must use efficiently the resources that they can deliver, e.g., water and electricity, and also be efficient from an economic point of view and guarantee future supply.

References

  1. 1.
    Dai L (1989) Singular control systems. Springer, Berlin Heidelberg, Germany
  2. 2.
    Duan G (2010) Analysis and design of descriptor linear systems. Springer, New York, USA
  3. 3.
    Araujo J, Barros P, Dorea C (2012) Design of observers with error limitation in discrete-time descriptor systems: a case study of a hydraulic tank system. IEEE Trans Control Syst Technol 20(4):1041–1047
  4. 4.
    Puig V, Ocampo-Martinez C, Pérez R, Cembrano G, Quevedo J, Escobet T (2017) Real-time monitoring and operational control of drinking-water systems. Springer
  5. 5.
    Wang Y, Puig V, Cembrano G (2017) Non-linear economic model predictive control of water distribution networks. J Process Control 56:23–34
  6. 6.
    Biegler L, Campbell S, Mehrmann V (2012) Control and optimization with differential-algebraic constraints. Society for Industrial and Applied Mathematics, Philadelphia, USA
  7. 7.
    Riaza R (2008) Differential-algebraic systems: analytical aspects and circuit applications. World Scientific Publishing Company, New York, USA
  8. 8.
    Stevens B, Lewis FL, Johnson E (2016) Aircraft control and simulation: dynamics, controls design, and autonomous systems. Wiley-Blackwell, New York, USA
  9. 9.
    Zhang Q, Liu C, Zhang X (2012) Complexity, analysis and control of singular biological systems. Springer, London, UK
  10. 10.
    Luenberger D, Arbel A (1977) Singular dynamic Leontief systems. Econometrica 45(4):991–995
  11. 11.
    Zhang L, Lam J, Zhang Q (1999) Lyapunov and Riccati equations of discrete-time descriptor systems. IEEE Trans Autom Control 44(11):2134–2139
  12. 12.
    Halanay A, Rasvan V (2000) Stability and stable oscillations in discrete time systems. CRC Press
  13. 13.
    Hsieh C (2013) State estimation for descriptor systems via the unknown input filtering method. Automatica 49(5):1281–1286
  14. 14.
    Ishihara J, Terra M, Bianco A (2010) Recursive linear estimation for general discrete-time descriptor systems. Automatica 46(4):761–766
  15. 15.
    Angeli D, Amrit R, Rawlings J (2012) On average performance and stability of economic model predictive control. IEEE Trans Autom Control 57(7):1615–1626
  16. 16.
    Ellis M, Liu J, Christofides P (2017) Economic model predictive control: theory, formulations and chemical process applications. Springer
  17. 17.
    Mayne D (2014) Model predictive control: recent developments and future promise. Automatica 50(12):2967–2986
  18. 18.
    Maciejowski J (2002) Predictive control with constraints. Prentice-Hall
  19. 19.
    Rawlings J, Mayne D (2009) Model predictive control: theory and design. Wis. Nob Hill Pub. cop, Madison
  20. 20.
    Cembrano G, Quevedo J, Salamero M, Puig V, Figueras J, Martí J (2004) Optimal control of urban drainage systems. A case study. Control Eng Pract 12(1):1–9
  21. 21.
    Cembrano G, Wells G, Quevedo J, Perez R, Argelaguet R (2000) Optimal control of a water distribution network in a supervisory control system. Control Eng Pract 8(10):1177–1188
  22. 22.
    Ocampo-Martinez C, Puig V, Cembrano G, Quevedo J (2013) Application of MPC strategies to the management of complex networks of the urban water cycle. IEEE Control Syst 33(1):15–41
  23. 23.
    Pereira M, Muñoz de la Peña D, Limon D, Alvarado I, Alamo T (2016) Application to a drinking water network of robust periodic MPC. Control Eng Pract 57:50–60
  24. 24.
    Zeng J, Liu J (2015) Economic model predictive control of wastewater treatment processes. Ind Eng Chem Res 54(21):5710–5721
  25. 25.
    Pereira M, Limon D, Muñoz de la Peña D, Limon D (2017) Robust economic model predictive control of a community micro-grid. Renew Energy 100:3–17
  26. 26.
    Pereira M, Limon D, Muñoz de la Peña D, Valverde L, Alamo T (2015) Periodic economic control of a nonisolated microgrid. IEEE Trans Ind Electron 62(8):5247–5255
  27. 27.
    Liu S, Zhang J, Liu J (2015) Economic MPC with terminal cost and application to an oilsand primary separation vessel. Chem Eng Sci 136:27–37
  28. 28.
    Santander O, Elkamel A, Budman H (2016) Economic model predictive control of chemical processes with parameter uncertainty. Comput Chem Eng 95:10–20
  29. 29.
    Amrit R, Rawlings J, Angeli D (2011) Economic optimization using model predictive control with a terminal cost. Annu Rev Control 35(2):178–186
  30. 30.
    Müller M, Angeli D, Allgöwer F (2014) On the performance of economic model predictive control with self-tuning terminal cost. J Process Control 24(8):1179–1186
  31. 31.
    Ellis M, Durand H, Christofides P (2016) Elucidation of the role of constraints in economic model predictive control. Annu Rev Control 41:208–217
  32. 32.
    Grüne L (2013) Economic receding horizon control without terminal constraints. Automatica 49(3):725–734
  33. 33.
    Grüne L, Stieler M (2014) Asymptotic stability and transient optimality of economic MPC without terminal conditions. J Process Control 24(8):1187–1196
  34. 34.
    Liu S, Liu J (2016) Economic model predictive control with extended horizon. Automatica 73:180–192
  35. 35.
    Mayne D, Seron M, Raković S (2005) Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2):219–224
  36. 36.
    Pereira M, Muñoz de la Peña D, Limon D, Alvarado I, Alamo T (2017) Robust model predictive controller for tracking changing periodic signals. IEEE Trans Autom Control 62(10):5343–5350
  37. 37.
    Bayer F, Müller M, Allgöwer F (2018) On optimal system operation in robust economic MPC. Automatica 88:98–106
  38. 38.
    Broomhead T, Manzie C, Shekhar R, Hield P (2015) Robust periodic economic MPC for linear systems. Automatica 60:30–37
  39. 39.
    Huang R, Biegler L, Harinath E (2012) Robust stability of economically oriented infinite horizon NMPC that include cyclic processes. J Process Control 22(1):51–59
  40. 40.
    Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2016) Diagnosis and fault-tolerant control. Springer, Berlin Heidelberg
  41. 41.
    Ding S (2013) Model-based fault diagnosis techniques. Springer, London, UK
  42. 42.
    Chadli M, Abdo A, Ding S (2013) Fault detection filter design for discrete-time Takagi-Sugeno fuzzy system. Automatica 49(7):1996–2005
  43. 43.
    Ichalal D, Marx B, Ragot J, Maquin D (2014) Fault detection, isolation and estimation for Takagi-Sugeno nonlinear systems. J Frankl Inst 351(7):3651–3676
  44. 44.
    Lee KS, Park TG (2015) Robust fault detection observer design under fault sensitivity constraints. J Frankl Inst 352(5):1791–1810
  45. 45.
    Blanchini F, Casagrande D, Giordano G, Miani S, Olaru S, Reppa V (2017) Active fault isolation: a duality-based approach via convex programming. SIAM J Control Optim 55(3):1619–1640
  46. 46.
    Raka S, Combastel C (2013) Fault detection based on robust adaptive thresholds: a dynamic interval approach. Annu Rev Control 37(1):119–128
  47. 47.
    Xu F, Puig V, Ocampo-Martinez C, Stoican F, Olaru S (2014) Actuator-fault detection and isolation based on set-theoretic approaches. J Process Control 24(6):947–956
  48. 48.
    Puig V, Quevedo J, Escobet T, Nejjari F, De Las Heras S (2008) Passive robust fault detection of dynamic processes using interval models. IEEE Trans Control Syst Technol 16(5):1083–1089
  49. 49.
    Alamo T, Bravo J, Camacho E (2005) Guaranteed state estimation by zonotopes. Automatica 41(6):1035–1043
  50. 50.
    Scott J, Raimondo D, Marseglia G, Braatz R (2016) Constrained zonotopes: a new tool for set-based estimation and fault detection. Automatica 69:126–136
  51. 51.
    Chen J, Patton R (1999) Robust model-based fault diagnosis for dynamic systems. Springer, New York, USA
  52. 52.
    Hou M, Muller PC (1992) Design of observers for linear systems with unknown inputs. IEEE Trans Autom Control 37(6):871–875
  53. 53.
    Koenig D (2005) Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation. IEEE Trans Autom Control 50(2):212–217
  54. 54.
    Rotondo D, Witczak M, Puig V, Nejjari F, Pazera M (2016) Robust unknown input observer for state and fault estimation in discrete-time Takagi-Sugeno systems. Int J Syst Sci 47(14):3409–3424
  55. 55.
    Xu F, Tan J, Wang X, Puig V, Liang B, Yuan B (2016) A novel design of unknown input observers using set-theoretic methods for robust fault detection. In: American control conference (ACC), Boston, USA, pp 5957–5961
  56. 56.
    Xu F, Tan J, Wang X, Puig V, Liang B, Yuan B (2018) Mixed active/passive robust fault detection and isolation using set-theoretic unknown input observers. IEEE Trans Autom Sci Eng 15(2):863–871
  57. 57.
    Varga A (2017) Solving fault diagnosis problems. Springer
  58. 58.
    Wan Y, Keviczky T (2019) Real-time fault-tolerant moving horizon air data estimation for the reconfigure benchmark. IEEE Trans Control Syst Technol 27(3):997–1011
  59. 59.
    Wan Y, Keviczky T (2019) Real-time nonlinear moving horizon observer with pre-estimation for aircraft sensor fault detection and estimation. Int J Robust Nonlinear Control 29(16):5394–5411
  60. 60.
    Wan Y, Keviczky T, Verhaegen M (2018) Fault estimation filter design with guaranteed stability using Markov parameters. IEEE Trans Autom Control 63(4):1132–1139
  61. 61.
    Gao Z (2015) Fault estimation and fault-tolerant control for discrete-time dynamic systems. IEEE Trans Ind Electron 62(6):3874–3884
  62. 62.
    Gao Z, Ding S (2007) Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 43(5):912–920
  63. 63.
    Lan J, Patton R (2016) A new strategy for integration of fault estimation within fault-tolerant control. Automatica 69:48–59
  64. 64.
    Wang Z, Rodrigues M, Theilliol D, Shen Y (2015) Fault estimation filter design for discrete-time descriptor systems. IET Control Theory Appl 9(10):1587–1594
  65. 65.
    Zhang K, Jiang B, Shi P, Xu J (2015) Fault estimation observer design for discrete-time systems in finite-frequency domain. Int J Robust Nonlinear Control 25(9):1379–1398
  66. 66.
    Wang Z, Shi P, Lim C (2017) Robust fault estimation observer in the finite frequency domain for descriptor systems. Int J Control 1590–1599
  67. 67.
    Lopez-Estrada F, Ponsart J, Astorga-Zaragoza C, Camas-Anzueto J, Theilliol D (2015) Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: application to an anaerobic bioreactor. Int J Appl Math Comput Sci 25(2):233–244
  68. 68.
    Rodrigues M, Hamdi H, Theilliol D, Mechmeche C, BenHadj Braiek N (2015) Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems. Int J Robust Nonlinear Control 25(5):673–688
  69. 69.
    Shi F, Patton R (2015) Fault estimation and active fault tolerant control for linear parameter varying descriptor systems. Int J Robust Nonlinear Control 25(5):689–706
  70. 70.
    Wang Z, Rodrigues M, Theilliol D, Shen Y (2015) Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems. Int J Adapt Control Signal Process 29(2):242–258
  71. 71.
    Koenig D, Marx B, Varrier S (2016) Filtering and fault estimation of descriptor switched systems. Automatica 63:116–121
  72. 72.
    Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252
  73. 73.
    Lunze J, Steffen T (2006) Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans Autom Control 51(10):1590–1601
  74. 74.
    Rotondo D, Nejjari F, Puig V (2014) A virtual actuator and sensor approach for fault tolerant control of LPV systems. J Process Control 24(3):203–222
  75. 75.
    Rotondo D, Puig V, Nejjari F, Romera J (2015) A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot. IEEE Trans Ind Electron 62(6):3932–3944
  76. 76.
    Rotondo D, Nejjari F, Puig V (2016) Fault tolerant control of a proton exchange membrane fuel cell using Takagi-Sugeno virtual actuators. J Process Control 45:12–29
  77. 77.
    Richter J, Heemels W, van de Wouw N, Lunze J (2011) Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking. Automatica 47(4):678–691
  78. 78.
    Rotondo D, Cristofaro A, Johansen T (2018) Fault tolerant control of uncertain dynamical systems using interval virtual actuators. Int J Robust Nonlinear Control 28(2):611–624
  79. 79.
    Alamo T, Bravo J, Redondo M, Camacho E (2008) A set-membership state estimation algorithm based on DC programming. Automatica 44(1):216–224
  80. 80.
    Combastel C (2015) Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence. Automatica 55:265–273
  81. 81.
    Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval analysis, with examples in parameter and state estimation, robust control and robotics. Springer
  82. 82.
    Puig V, Cuguero P, Quevedo J (2001) Worst-case state estimation and simulation of uncertain discrete-time systems using zonotopes. In: European control conference (ECC), pp 1691–1697
  83. 83.
    Raïssi T, Ramdani N, Candau Y (2004) Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40(10):1771–1777
  84. 84.
    Thabet R, Raïssi T, Combastel C, Efimov D, Zolghadri A (2014) An effective method to interval observer design for time-varying systems. Automatica 50(10):2677–2684
  85. 85.
    Wan Y, Puig V, Ocampo-Martinez C, Wang Y, Braatz R (2018) Probability-guaranteed set-membership state estimation for polynomially uncertain linear time-invariant systems. In: 57th IEEE conference on decision and control (IEEE-CDC), Miami, USA, pp 2291–2296
  86. 86.
    Schweppe F (1968) Recursive state estimation: unknown but bounded errors and system inputs. IEEE Trans Autom Control 13(1):22–28
  87. 87.
    Efimov D, Perruquetti W, Raïssi T, Zolghadri A (2013) Interval observers for time-varying discrete-time systems. IEEE Trans Autom Control 58(12):3218–3224
  88. 88.
    Kalman R (1960) A new approach to linear filtering and prediction problems. ASME J Basic Eng 82(1):35–45
  89. 89.
    Kalman R, Bucy R (1961) New results in linear filtering and prediction theory. ASME J Basic Eng 83(1):95–108
  90. 90.
    Puig V (2010) Fault diagnosis and fault tolerant control using set-membership approaches: application to real case studies. Int J Appl Math Comput Sci 20(4):619–635
  91. 91.
    Combastel C (2003) A state bounding observer based on zonotopes. In: European control conference (ECC), Cambridge, UK, pp 2589–2594
  92. 92.
    Combastel C (2015) Merging Kalman filtering and zonotopic state bounding for robust fault detection under noisy environment. In: 9th IFAC symposium on fault detection. Supervision and safety for technical processes (SAFEPROCESS). France, Paris, pp 289–295
  93. 93.
    Blanchini F (1999) Set invariance in control. Automatica 35(11):1747–1767
  94. 94.
    Kolmanovsky I, Gilbert E (1998) Theory and computation of disturbance invariant sets for discrete-time linear systems. Math Probl Eng 4(4):317–367
  95. 95.
    Limon D, Alamo T, Camacho E (2002) Stability analysis of systems with bounded additive uncertainties based on invariant sets: stability and feasibility of MPC. In: American control conference (ACC), Alaska, USA, pp 364–369
  96. 96.
    Raković S, Kerrigan E, Kouramas K, Mayne D (2005) Invariant approximations of the minimal robust positively invariant set. IEEE Trans Autom Control 50(3):406–410
  97. 97.
    Stoican F, Oară C, Hovd M (2015) RPI approximations of the mRPI set characterizing linear dynamics with zonotopic disturbances. In: Developments in model-based optimization and control: distributed control and industrial applications. Springer, pp 361–377
  98. 98.
    Seron M, De Doná J (2015) On robust stability and set invariance of switched linear parameter varying systems. Int J Control 88(12):2588–2597
  99. 99.
    Seron M, De Doná J (2016) On invariant sets and closed-loop boundedness of Lure-type nonlinear systems by LPV-embedding. Int J Robust Nonlinear Control 26(5):1092–1111
  100. 100.
    Blanchini F, Casagrande D, Miani S (2010) Modal and transition dwell time computation in switching systems: a set-theoretic approach. Automatica 46(9):1477–1482
  101. 101.
    Heidari R, Braslavsky J, Seron M, Haimovich H (2016) Ultimate bound minimisation by state feedback in discrete-time switched linear systems under arbitrary switching. Nonlinear Anal Hybrid Syst 21:84–102
  102. 102.
    Alamo T, Cepeda A, Fiacchini M, Camacho E (2009) Convex invariant sets for discrete-time Lur’e systems. Automatica 45(4):1066–1071
  103. 103.
    Bravo J, Limon D, Alamo T, Camacho E (2005) On the computation of invariant sets for constrained nonlinear systems: an interval arithmetic approach. Automatica 41(9):1583–1589
  104. 104.
    Fiacchini M, Alamo T, Camacho E (2010) On the computation of convex robust control invariant sets for nonlinear systems. Automatica 46(8):1334–1338
  105. 105.
    Fiacchini M, Alamo T, Camacho E (2012) Invariant sets computation for convex difference inclusions systems. Syst Control Lett 61(8):819–826
  106. 106.
    Kofman E, Haimovich H, Seron M (2007) A systematic method to obtain ultimate bounds for perturbed systems. Int J Control 80(2):167–178
  107. 107.
    Olaru S, De Doná J, Seron M, Stoican F (2010) Positive invariant sets for fault tolerant multisensor control schemes. Int J Control 83(12):2622–2640
  108. 108.
    Stoican F, Olaru S, Seron M, De Doná J (2012) Reference governor design for tracking problems with fault detection guarantees. J Process Control 22(5):829–836
  109. 109.
    Seron M, De Doná J, Olaru S (2012) Fault tolerant control allowing sensor healthy-to-faulty and faulty-to-healthy transitions. IEEE Trans Autom Control 57(7):1657–1669
  110. 110.
    Stoican F, Olaru S (2013) Set-theoretic fault-tolerant control in multisensor systems. Wiley-ISTE
  111. 111.
    Xu F, Olaru S, Puig V, Ocampo-Martinez C, Niculescu S (2017) Sensor-fault tolerance using robust MPC with set-based state estimation and active fault isolation. Int J Robust Nonlinear Control 27(8):1260–1283
  112. 112.
    Mayne D, Raković S, Findeisen R, Allgöwer F (2006) Robust output feedback model predictive control of constrained linear systems. Automatica 42(7):1217–1222
  113. 113.
    Kofman E, Seron M, Haimovich H (2008) Control design with guaranteed ultimate bound for perturbed systems. Automatica 44(7):1815–1821
  114. 114.
    Raimondo D, Marseglia G, Braatz R, Scott J (2016) Closed-loop input design for guaranteed fault diagnosis using set-valued observers. Automatica 74:107–117
  115. 115.
    Scott J, Findeisen R, Braatz R, Raimondo D (2014) Input design for guaranteed fault diagnosis using zonotopes. Automatica 50(6):1580–1589
  116. 116.
    Marseglia G, Raimondo D (2017) Active fault diagnosis: a multi-parametric approach. Automatica 79:223–230
  117. 117.
    Wang Y, Olaru S, Valmorbida G, Puig V, Cembrano G (2017) Robust invariant sets and active mode detection for discrete-time uncertain descriptor systems. In: 56th IEEE conference on decision and control (IEEE-CDC), Melbourne, Australia, pp 5648–5653
  118. 118.
    Gerdin M (2004) Computation of a canonical form for linear differential-algebraic equations. Technical report, Linköping University
  119. 119.
    Iwasaki T, Hara S (2005) Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans Autom Control 50(1):41–59

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Automatic Control, Institut de Robòtica i Informàtica Industrial, CSIC-UPCUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.College of AutomationHarbin Engineering UniversityHarbinP. R. China
  3. 3.Department of Electrical and Electronic EngineeringThe University of MelbourneMelbourneAustralia

Personalised recommendations