手机体育投注平台

Advertisement

Economic Model Predictive Control Strategies Based on a Periodicity Constraint

Chapter
  • 4 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Periodic behavior appears in some specific systems, such as WDNs  [1, 2, 3] and electrical networks  [4]. One specific example stems from the periodic behavior of customer demands in WDNs. A WDN generally consists of a large number of hydraulic elements, such as storage tanks, pressurized pipelines, pumping stations (including several parallel pumps) and valves. EMPC is suitable for optimizing the economic performance of operations in WDNs, as shown in  [5, 6, 7], but these methods do not take specific advantage of the periodic nature of the consumer demands and energy costs. Taking into account the daily water demand patterns and periodic electricity prices, periodic operations can also be considered in the EMPC design.

References

  1. 1.
    Limon D, Pereira M, Muñoz de la Peña D, Alamo T, Grosso J (2014) Single-layer economic model predictive control for periodic operation. J Process Control 24(8):1207–1224
  2. 2.
    Wang Y, Puig V, Cembrano G (2017) Non-linear economic model predictive control of water distribution networks. J Process Control 56:23–34
  3. 3.
    Wang Y, Salvador J, Muñoz de la Peña D, Puig V, Cembrano G (2017) Periodic nonlinear economic model predictive control with changing horizon for water distribution networks. In: 20th IFAC world congress, Toulouse, France, pp 6588–6593
  4. 4.
    Pereira M, Limon D, Muñoz de la Peña D, Valverde L, Alamo T (2015) Periodic economic control of a nonisolated microgrid. IEEE Trans Ind Electron 62(8):5247–5255
  5. 5.
    Cembrano G, Wells G, Quevedo J, Perez R, Argelaguet R (2000) Optimal control of a water distribution network in a supervisory control system. Control Eng Pract 8(10):1177–1188
  6. 6.
    Ocampo-Martinez C, Puig V, Cembrano G, Quevedo J (2013) Application of MPC strategies to the management of complex networks of the urban water cycle. IEEE Control Syst 33(1):15–41
  7. 7.
    Puig V, Ocampo-Martinez C, Pérez R, Cembrano G, Quevedo J, Escobet T (2017) Real-time monitoring and operational control of drinking-water systems. Springer
  8. 8.
    Wang Y, Muñoz de la Peña D, Puig V, Cembrano G (2018) A novel formulation of economic model predictive control for periodic operations. In: European control conference (ECC), Limassol, Cyprus, pp 1015–1020
  9. 9.
    Wang Y, Salvador J, Muñoz de la Peña D, Puig V, Cembrano G (2018) Economic model predictive control based on a periodicity constraint. J Process Control 68:226–239
  10. 10.
    Wang Y, Muñoz de la Peña D, Puig V, Cembrano G (2019) Robust economic model predictive control based on a periodicity constraint. Int J Robust Nonlinear Control 29(11):3296–3310
  11. 11.
    Limon D, Pereira M, Muñoz de la Peña D, Alamo T, Jones C, Zeilinger M (2016) MPC for tracking periodic references. IEEE Trans Autom Control 61(4):1123–1128
  12. 12.
    Mayne D (2014) Model predictive control: recent developments and future promise. Automatica 50(12):2967–2986
  13. 13.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press
  14. 14.
    Broomhead T, Manzie C, Shekhar R, Hield P (2015) Robust periodic economic MPC for linear systems. Automatica 60:30–37
  15. 15.
    Wang Y, Puig V, Cembrano G (2016) Economic MPC with periodic terminal constraints of nonlinear differential-algebraic-equation systems: application to drinking water networks. In: European control conference (ECC), Aalborg, Denmark, pp 1013–1018
  16. 16.
    Mayne D, Seron M, Raković S (2005) Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2):219–224
  17. 17.
    Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB
  18. 18.
    MOSEK ApS (2015) The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28)

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Automatic Control, Institut de Robòtica i Informàtica Industrial, CSIC-UPCUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.College of AutomationHarbin Engineering UniversityHarbinP. R. China
  3. 3.Department of Electrical and Electronic EngineeringThe University of MelbourneMelbourneAustralia

Personalised recommendations