手机体育投注平台

手机体育投注平台Advertisement

A Study on the Dynamic Behavior of a Slurry Mixing and Pumping Process: An Industrial Case

  • Ridouane OulhiqEmail author
  • Khalid Benjelloun
  • Yassine Kali
  • Maarouf Saad
  • Laurent Deshayes
Conference paper
  • 35 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1260)

Abstract

手机体育投注平台Flow behavior of solid-liquid flow systems depends on the solids’ properties, the carrier fluid and the interactions between the two phases. The solids’ properties of slurry pumping systems such as granulometry and density change as a function of time and location. The above-mentioned changes impact directly the slurry pumping flow rate. In this paper, a dynamic model of an industrial mixing tank with a slurry centrifugal pump is proposed. The dynamic model takes into account the different parts of the pump; the hydraulic part, the induction motor and the system head. A graphical method is then used to estimate the hydraulic part and the induction motor parameters. Regarding the system head, the model is generalized for both homogeneous and heterogeneous flows. The overall model is simulated using MATLAB/Simulink software and validated through a comparison between the results obtained and the real industrial data of a slurry mixing and pumping unit. Finally, the effects of density and level variations on the flow dynamic behavior are studied.

Keywords

Slurry pumping Solid-liquid flows Centrifugal pump Heterogeneous slurry 

References

  1. 1.
    Aree, P.: Analytical approach to determine speed-torque curve of induction motor from manufacturer data. Procedia Comput. Sci. 86, 293–296 (2016)
  2. 2.
    Blevins, T.L., Nixon, M.: Control Loop Foundation: Batch and Continuous Processes. ISA, Pittsburgh (2010)
  3. 3.
    Chakravarty, S.: Technology and Engineering Applications of Simulink. InTech, London (2012)
  4. 4.
    Chan, T.F., Shi, K.: Applied Intelligent Control of Induction Motordrives. Wiley, Hoboken (2011)
  5. 5.
    Deng, S.Y.: Nonlinear & linear MIMO control of an industrial mixing process. Master’s thesis, McGill University (2002)
  6. 6.
    Du, W.: Informatics and Management Science. Springer, London (2013)
  7. 7.
    El-Emam, N., Kamel, A., El-Shafei, M., El-Batrawy, A.: New equation calculates friction factor for turbulent flow on non-newtonian fluids. Oil Gas J. 101(36), 74 (2003)
  8. 8.
    Gan, D.S.H.Y., Gromiha, P.G.M.M.: Advanced Intelligent Computing Theories and Applications. Springer, Heidelberg (2010)
  9. 9.
    Ghafouri, J., Khayatzadeh, H., Khayatzadeh, A.: Dynamic modeling of variable speed centrifugal pump utilizing matlab/simulink. Int. J. Sci. Eng. Invest. 1(5), 1–7 (2012)
  10. 10.
    Hougen, O.A., Watson, K.M., Ragatz, R.A.: Chemical Process Principles: Material and Energy Balances, vol. 1. Wiley, Hoboken (1954)
  11. 11.
    Isermann, R.: Mechatronic Systems: Fundamentals. Springer, Heidelberg (2007)
  12. 12.
    Kallesøe, C.S., Cocquempot, V., Izadi-Zamanabadi, R.: Model based fault detection in a centrifugal pump application. IEEE Trans. Control Syst. Technol. 14(2), 204–215 (2006)
  13. 13.
    Kallesøe, C.S., Izaili-Zamanabadi, R., Rasmussen, H., Cocquempot, V.: Model based fault diagnosis in a centrifugal pump application using structural analysis. In: Proceedings of the 2004 IEEE International Conference on Control Applications, 2004. vol. 2, pp. 1229–1235, September 2004
  14. 14.
    Kallesøe, C.S.: Fault detection and isolation in centrifugal pumps. Ph.D. thesis, Aalborg University, Institute of Electric Systems (2005)
  15. 15.
    Manekar, G., Bodkhe, S.B.: Modeling methods of three phase induction motor. In: National Conference on Innovative Paradigms in Engineering & Technology, pp. 16–20 (2013)
  16. 16.
    MATLAB: What is an S-function? The MathWorks Inc. (2020)
  17. 17.
    Menon, S.: Piping Calculations Manual. McGraw Hill Professional, New York (2004)
  18. 18.
    Miedema, S.: Modeling and simulation of the dynamic behavior of a pump/pipeline system. In: 17th Annual Meeting & Technical Conference of the Western Dredging Association. New Orleans (1996)
  19. 19.
    Oulhiq, R., Benjelloun., K., Saad., M., Kali., Y., Deshayes., L.: Dynamic modeling and simulation of a slurry mixing and pumping process: an industrial case. In: Proceedings of the 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications SIMULTECH, vol. 1, pp. 27–35, July 2019
  20. 20.
    Peube, J.L.: Fundamentals of Fluid Mechanics and Transport Phenomena. ISTE, London (2009)
  21. 21.
    Seborg, D.E., Mellichamp, D.A., Edgar, T.F., Doyle III, F.J.: Process Dynamics and Control. Wiley, Hoboken (2010)
  22. 22.
    Shamlou, P.A.: Processing of Solid-Liquid Suspensions. Elsevier, Amsterdam (2016)
  23. 23.
    Skogestad, S.: Chemical and Energy Process Engineering. CRC Press, Cambridge (2008)
  24. 24.
    Southard, M.Z., Green, D.W.: Perry’s Chemical Engineers’ Handbook. McGraw-Hill Education, New York (2018)
  25. 25.
    Trzynadlowski, A.M.: Control of Induction Motors. Elsevier, Amsterdam (2000)
  26. 26.
    Valtr, J.: Mass flow estimation and control in pump driven hydronic systems. Master’s thesis, Czech Technical University, Czech Republic (2017)
  27. 27.
    Wilson, K.C., Addie, G.R., Sellgren, A., Clift, R.: Slurry Transport Using Centrifugal Pumps. Springer, Boston (2006)

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Ridouane Oulhiq
    • 1
    • 2
    Email author
  • Khalid Benjelloun
    • 1
    • 2
  • Yassine Kali
    • 3
  • Maarouf Saad
    • 3
  • Laurent Deshayes
    • 2
  1. 1.Ecole Mohammadia d’IngénieursMohammed V UniversityRabatMorocco
  2. 2.Mohammed VI Polytechnic UniversityBenguerirMorocco
  3. 3.École de Technologie SupérieureMontrealCanada

Personalised recommendations