手机体育投注平台

Advertisement

Dynamic Simulation of Two Kinds of Hydraulic Actuated Long Boom Manipulator in Port-Hamiltonian Formulation

  • Lingchong GaoEmail author
  • Mei Wang
  • Haijun Peng
  • Michael Kleeberger
  • Johannes Fottner
Conference paper
  • 35 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1260)

Abstract

手机体育投注平台The boom systems of mobile cranes and aerial platform vehicles can be described as hydraulic actuated long boom manipulators. The purpose of this paper is to develop a complete mathematical model for such a boom system which is a multi-domains system consisting of the boom structure and hydraulic drive system. The hydraulic system and the boom structure are described in the port-Hamiltonian formulation. The port-Hamiltonian systems can be easily interconnected through energy exchanges, thus allowing the description of a complex system as a composition of subsystems. The structure of the long boom manipulator is specified as two main types, telescopic boom, and folding boom. These two boom types are correspondingly simplified as rotational non-homogeneous Timoshenko beam and double rotational Timoshenko beams. A structure-preserving discretization for the Timoshenko beam model is applied to transfer the boom model from infinite into finite. Then the interconnections between the hydraulic model and discretized boom structure model are illustrated and simulations of two types of long boom manipulators are accomplished in MATLAB/Simulink.

Keywords

Port-Hamiltonian system Structure-preserving discretization Hydraulic cylinder Telescopic boom Folding boom 

References

  1. 1.
    Sun, G., Kleeberger, M.: Dynamic responses of hydraulic mobile crane with consideration of the drive system. Mech. Mach. Theory 38(12), 1489–1508 (2003)
  2. 2.
    Sun, G., Kleeberger, M., Liu, J.: Complete dynamic calculation of lattice mobile crane during hoisting motion. Mech. Mach. Theory 40(4), 447–466 (2005)
  3. 3.
    Sun, G., Liu, J.: Dynamic responses of hydraulic crane during luffing motion. Mech. Mach. Theory 41(11), 1273–1288 (2006)
  4. 4.
    Zuyev, A., Sawodny, O.: Stabilization of a flexible manipulator model with passive joints. IFAC Proc. Vol. 38(1), 784–789 (2005)
  5. 5.
    Sawodny, O., Aschemann, H., Bulach, A.: Mechatronical designed control of fire-rescue turntable-ladders as flexible link robots. IFAC Proc. Vol. 35(1), 509–514 (2002)
  6. 6.
    Pertsch, A., Zimmert, N., Sawodny, O. (eds.): Modeling a fire-rescue turntable ladder as piecewise Euler-Bernoulli beam with a tip mass. IEEE (2009)
  7. 7.
    Pertsch, A., Sawodny, O.: Modelling and control of coupled bending and torsional vibrations of an articulated aerial ladder. Mechatronics 33, 34–48 (2016)
  8. 8.
    Nguyen, V.T., Schmidt, T., Leonhardt, T.: Effect of pre-tensioned loads to vibration at the ladder tip in raising and lowering processes on a turntable ladder. J. Mech. Sci. Technol. 33(5), 2003–2010 (2019)
  9. 9.
    Kugi, A., Haas, W., Schlacher, K., Aistleitner, K., Frank, H.M., Rigler, G.W.: Active compensation of roll eccentricity in rolling mills. IEEE Trans. Ind. Appl. 36(2), 625–632 (2000)
  10. 10.
    Gawthrop, P.J., Bevan, G.P.: Bond-graph modeling. IEEE Control Syst. Mag. 27(2), 24–45 (2007)
  11. 11.
    Zhao, Q., Gao, F.: Bond graph modelling of hydraulic six-degree-of-freedom motion simulator. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 226(12), 2887–2901 (2012)
  12. 12.
    Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H.: Modeling and Control of Complex Physical Systems: The port-Hamiltonian Approach. Springer, Heidelberg (2009)
  13. 13.
    Macchelli, A., Melchiorri, C.: Modeling and control of the timoshenko beam. The distributed port hamiltonian approach. SIAM J. Control Optimiz. 43(2), 743–767 (2004)
  14. 14.
    Macchelli, A., Melchiorri, C., Stramigioli, S.: Port-based modeling and simulation of mechanical systems with rigid and flexible links. IEEE Trans. Rob. 25(5), 1016–1029 (2009)
  15. 15.
    Moulla, R., Lefevre, L., Maschke, B.: Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. J. Comput. Phys. 231(4), 1272–1292 (2012)
  16. 16.
    Vu, N.M.T., Lefevre, L., Nouailletas, R., Brémond, S.: Geometric discretization for a plasma control model. IFAC Proc. Vol. 46(2), 755–760 (2013)
  17. 17.
    Wang, M., Bestler, A., Kotyczka, P.: Modeling, discretization and motion control of a flexible beam in the port-hamiltonian framework. IFAC-PapersOnLine 50(1), 6799–6806 (2017)
  18. 18.
    Bo, X., Fujimoto, K., Hayakawa, Y.: Control of two-link flexible manipulators via generalized canonical transformation. In: IEEE Conference on Robotics, Automation and Mechatronics, vol. 1, pp. 107–112. IEEE (2004)
  19. 19.
    Kugi, A., Kemmetmüller, W.: New energy-based nonlinear controller for hydraulic piston actuators. Eur. J. Control 10(2), 163–173 (2004)
  20. 20.
    Stadlmayr, R.: On a combination of feedforward and feedback control for mechatronic systems. Shaker (2009)
  21. 21.
    Stadlmayr, R., Schlacher, K. (eds.): Modelling and Control of a Hydraulic Actuated Large Scale Manipulator, vol. 1. Wiley, New York (2004)
  22. 22.
    Cardoso-Ribeiro, F.L., Matignon, D., Pommier-Budinger, V.: A power-preserving discretization using weak formulation of piezoelectric beam with distributed control ports. IFAC-PapersOnLine 49(8), 290–297 (2016)
  23. 23.
    Gao, L., Mei, W., Kleeberger, M., Peng, H., Fottner, J.: Modeling and discretization of hydraulic actuated telescopic boom system in port-Bamiltonian formulation. In: Proceedings of the 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 69–79. SCITEPRESS-Science and Technology Publications, Lda. (2019)

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Lingchong Gao
    • 1
    Email author
  • Mei Wang
    • 2
  • Haijun Peng
    • 3
  • Michael Kleeberger
    • 1
  • Johannes Fottner
    • 1
  1. 1.Chair of Materiels Handling, Material Flow, LogisticsTechnical University of MunichGarchingGermany
  2. 2.Chair of Automatic ControlTechnical University of MunichGarchingGermany
  3. 3.Department of Engineering MechanicsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations