手机体育投注平台

Advertisement

RNA Editing pp 269-286 | Cite as

RNA Editing in Interferonopathies

  • Loredana Frassinelli
  • Silvia Galardi
  • Silvia Anna Ciafrè
  • Alessandro MichienziEmail author
Protocol
  • 49 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2181)

Abstract

手机体育投注平台The type I interferonopathies comprise a heterogenous group of monogenic diseases associated with a constitutive activation of type I interferon signaling.

The elucidation of the genetic causes of this group of diseases revealed an alteration of nucleic acid processing and signaling.

ADAR1 is among the genes found mutated in patients with this type of disorders.

This enzyme catalyzes the hydrolytic deamination of adenosines in inosines within a double-stranded RNA target (RNA editing of A to I). This RNA modification is widespread in human cells and deregulated in a variety of human diseases, ranging from cancers to neurological abnormalities.

In this review, we briefly summarize the knowledge about the RNA editing alterations occurring in patients with mutations in ADAR1 gene and how these alterations might cause the inappropriate IFN activation.

Key words

Interferonopathies RNA editing ADAR1 Double-stranded RNAs Innate immunity Type I interferon 

Notes

Acknowledgments

This work was supported by the United Leukodystrophy Foundation Grant.

References

  1. 1.
    Crow YJ, Manel N (2015) Aicardi-Goutières syndrome and the type I interferonopathies. Nat Rev Immunol 15:429–440.  
  2. 2.
    Uggenti C, Lepelley A, Crow YJ (2019) Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Annu Rev Immunol 37:247–267.  
  3. 3.
    Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32
  4. 4.
    Barrat FJ, Elkon KB, Fitzgerald KA (2016) Importance of nucleic acid recognition in inflammation and autoimmunity. Annu Rev Med 67:323–336
  5. 5.
    Hartmann G (2017) Nucleic acid immunity. Adv Immunol 133:121–169
  6. 6.
    McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103.  
  7. 7.
    Yoo JS, Kato H, Fujita T (2014) Sensing viral invasion by RIG-I like receptors. Curr Opin Microbiol 20:131–138.  
  8. 8.
    Ablasser ACZ (2019) cGAS in action: expanding roles in immunity and inflammation. Science 363:eaat8657.  
  9. 9.
    Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545.  
  10. 10.
    Gonzalez-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol 12:125–135
  11. 11.
    Kretschmer S, Lee-Kirsch MA (2017) Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol 49:96–102.  
  12. 12.
    Rodero MP, Crow YJ (2016) Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med 213:2527–2538
  13. 13.
    Davidson S, Steiner A, Harapas CR, Masters SL (2018) An update on autoinflammatory diseases: interferonopathies. Curr Rheumatol Rep 20:38.  
  14. 14.
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CR, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, St Hilaire C, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518.  
  15. 15.
    Feigenbaum A, Müller C, Yale C, Kleinheinz J, Jezewski P, Kehl HG, MacDougall M, Rutsch F, Hennekam RC (2013) Singleton-Merten syndrome: an autosomal dominant disorder with variable expression. Am J Med Genet A 161A:360–370.  
  16. 16.
    Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ, Yoo JY, Lee J, Jeong YM, Kim CH, Kim OH, Sohn S, Nam SH, Hong Y, Lee YS, Chang SA, Jang SY, Kim JW, Lee MS, Lim SY, Sung KS, Park KT, Kim BJ, Lee JH, Kim DK, Kee C, Ki CS (2015) Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet 96:266–274.  
  17. 17.
    Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD, Li Z, van Unen L, Heijsman D, Goldmann T, Lequin MH, Kros JM, Stam W, Hermann M, Willemsen R, Brouwer RW, Van IJcken WF, Martin-Fernandez M, de Coo I, Dudink J, de Vries FA, Bertoli Avella A, Prinz M, Crow YJ, Verheijen FW, Pellegrini S, Bogunovic D, Mancini GM (2016) Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213:1163–1174.  
  18. 18.
    Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG, Fuchs SY, Shuai K, Zhang DE (2006) UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J 25:2358–2367
  19. 19.
    Crow YJ (2005) Aicardi-Goutières syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A (eds) GeneReviews®. University of Washington, Seattle, WA. Seattle; 1993–2019. 2005 Jun 29 [updated 2016 Nov 22]
  20. 20.
    Rice GI, Forte GM, Szynkiewicz M, Chase DS, Aeby A, Abdel- Hamid MS, et al. (2013) Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol 12:1159–1169
  21. 21.
    Majer C, Schüssler JM, König R (2019) Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol 208(3–4):513–529.  
  22. 22.
    Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–886
  23. 23.
    Jeong HS, Backlund PS, Chen HC, Karavanov AA, Crouch RJ (2004) RNase H2 of Saccharomyces cerevisiae is a complex of three proteins. Nucleic Acids Res 32:407–414
  24. 24.
    Rychlik MP, Chon H, Cerritelli SM, Klimek P, Crouch RJ, Nowotny M (2010) Crystal structures of RNase H2 in complex with nucleic acid reveal the mechanism of RNA-DNA junction recognition and cleavage. Mol Cell 40:658–670
  25. 25.
    Sparks JL, Chon H, Cerritelli SM, Kunkel TA, Johansson E, Crouch RJ, Burgers PM (2012) RNase H2-initiated ribonucleotide excision repair. Mol Cell 47:980–986
  26. 26.
    George CX, John L, Samuel CE (2014) An RNA editor, adenosine deaminase acting on double-stranded RNA (ADAR1). J Interf Cytokine Res 34:437
  27. 27.
    Samuel CE (2019) Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem 294:1710–1720.  
  28. 28.
    Gallo A, Vukic D, Michalík D, O'Connell MA, Keegan LP (2017) ADAR RNA editing in human disease; more to it than meets the I. Hum Genet 136:1265–1278.  
  29. 29.
    George CX, Samuel CE (1999) Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A 96:4621–4626
  30. 30.
    George CX, Gan Z, Liu Y, Samuel CE (2011) Adenosine deaminases acting on RNA (ADARs), RNA editing and interferon action. J Interf Cytokine Res 31:99–117
  31. 31.
    George CX, Samuel CE (2015) STAT2-dependent induction of RNA adenosine deaminase ADAR1 by type I interferon differs between mouse and human cells in the requirement for STAT1. Virology 485:363–370
  32. 32.
    Herbert A (2019) Z-DNA and Z-RNA in human disease. Commun Biol 2:7.  
  33. 33.
    Weissbach RSA (2012) Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA 18:462–471.  
  34. 34.
    Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17:83
  35. 35.
    Bazak L, Levanon EY, Eisenberg E (2014) Genome-wide analysis of Alu editability. Nucleic Acids Res 42:6876–6884
  36. 36.
    Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 9:579–581
  37. 37.
    Licht KJM (2017) The other face of an editor: ADAR1 functions in editing-independent ways. BioEssays 39.  
  38. 38.
    Song C, Sakurai M, Shiromoto Y, Nishikura K (2016) Functions of the RNA editing enzyme ADAR1 and their relevance to human diseases. Genes 7:E129.  
  39. 39.
    Samuel CE (2011) Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 411:180–193.  
  40. 40.
    Doria M, Neri F, Gallo A, Farace MG, Michienzi A (2009) Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 37:5848–5858.  
  41. 41.
    Orecchini E, Federico M, Doria M, Arenaccio C, Giuliani E, Ciafrè SA, Michienzi A (2015) The ADAR1 editing enzyme is encapsidated into HIV-1 virions. Virology 485:475–480.  
  42. 42.
    Orecchini E, Frassinelli L, Michienzi A (2017) Restricting retrotransposons: ADAR1 is another guardian of the human genome. RNA Biol 14:1485–1491.  
  43. 43.
    Orecchini E, Frassinelli L, Galardi S, Ciafrè SA, Michienzi A (2018) Post-transcriptional regulation of LINE-1 retrotransposition by AID/APOBEC and ADAR deaminases. Chromosom Res 26:45–59.  
  44. 44.
    Livingston JH, Lin JP, Dale RC, Gill D, Brogan P, Munnich A, Kurian MA, Gonzalez-Martinez V, De Goede CG, Falconer A, Forte G, Jenkinson EM, Kasher PR, Szynkiewicz M, Rice GI, Crow YJ (2014) A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J Med Genet 51:76–82
  45. 45.
    Crow YJ, Zaki MS, Abdel-Hamid MS, Abdel-Salam G, Boespflug-Tanguy O, Cordeiro NJ, Gleeson JG, Gowrinathan NR, Laugel V, Renaldo F, Rodriguez D, Livingston JH, Rice GI (2014) Mutations in ADAR1, IFIH1, and RNASEH2B presenting as spastic paraplegia. Neuropediatrics 45:386–393
  46. 46.
    La Piana R, Uggetti C, Olivieri I, Tonduti D, Balottin U, Fazzi E, Orcesi S (2014) Bilateral striatal necrosis in two subjects with Aicardi-Goutières syndrome due to mutations in ADAR1 (AGS6). Am J Med Genet A 164A:815–819
  47. 47.
    Hayashi M, Suzuki T (2013) Dyschromatosis symmetrica hereditaria. J Dermatol 40:336–343.  
  48. 48.
    Kono M, Matsumoto F, Suzuki Y, Suganuma M, Saitsu H, Ito Y, Fujiwara S, Moriwaki S, Matsumoto K, Matsumoto N, Tomita Y, Sugiura K, Akiyama M (2016) Dyschromatosis Symmetrica Hereditaria and Aicardi-Goutières syndrome 6 are phenotypic variants caused by ADAR1 mutations. J Invest Dermatol 136:875–878.  
  49. 49.
    Kono M, Suganuma M, Dutta A, Ghosh SK, Takeichi T, Muro Y, Akiyama M (2018) Bilateral striatal necrosis and dyschromatosis symmetrica hereditaria: A-I editing efficiency of ADAR1 mutants and phenotype expression. Br J Dermatol 179:509–511.  
  50. 50.
    Rice GI, Kitabayashi N, Barth M, Briggs TA, Burton ACE, Carpanelli ML, Cerisola AM, Colson C, Dale RC, Danti FR, Darin N, De Azua B, De Giorgis V, De Goede CGL, Desguerre I, De Laet C, Eslahi A, Fahey MC, Fallon P, Fay A, Fazzi E, Gorman MP, Gowrinathan NR, Hully M, Kurian MA, Leboucq N, Lin JS, Lines MA, Mar SS, Maroofian R, Martí-Sanchez L, McCullagh G, Mojarrad M, Narayanan V, Orcesi S, Ortigoza-Escobar JD, Pérez-Dueñas B, Petit F, Ramsey KM, Rasmussen M, Rivier F, Rodríguez-Pombo P, Roubertie A, Stödberg TI, Toosi MB, Toutain A, Uettwiller F, Ulrick N, Vanderver A, Waldman A, Livingston JH, Crow YJ (2017) Genetic, phenotypic, and interferon biomarker status in ADAR1-related neurological disease. Neuropediatrics 48:166.  
  51. 51.
    Hadjadj J, Aladjidi N, Fernandes H, Leverger G, Magérus-Chatinet A, Mazerolles F, Stolzenberg MC, Jacques S, Picard C, Rosain J, Fourrage C, Hanein S, Zarhrate M, Pasquet M, Abou Chahla W, Barlogis V, Bertrand Y, Pellier I, Bottolier Lemallaz E, Fouyssac F, Blouin P, Thomas C, Cheikh N, Dore E, Pondarre C, Plantaz D, Jeziorski E, Millot F, Garcelon N, Ducassou S, Perel Y, Leblanc T, Neven B, Fischer A, Rieux-Laucat F (2019) Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood 134(1):9–21.  
  52. 52.
    Hartner JC, Schmittwolf C, Kispert A, Muller AM, Higuchi M, Seeburg PH (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279:4894–4902
  53. 53.
    Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115
  54. 54.
    Chung H, Calis JJA, Wu X, Sun T, Yu Y, Sarbanes SL, Dao Thi VL, Shilvock AR, Hoffmann HH, Rosenberg BR, Rice CM (2018) Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172:811–824.  
  55. 55.
    Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279:4952–4961.  
  56. 56.
    Ward SV, George CX, Welch MJ, Liou LY, Hahm B, Lewicki H, de la Torre JC, Samuel CE, Oldstone MB (2011) RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc Natl Acad Sci U S A 108:331–336
  57. 57.
    Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, Nellåker C, Vesely C, Ponting CP, McLaughlin PJ, Jantsch MF, Dorin J, Adams IR, Scadden AD, Ohman M, Keegan LP, O'Connell MA (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–1494.  
  58. 58.
    Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB (2015) Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43:933–944.  
  59. 59.
    Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, Li JB, Seeburg PH, Walkley CR (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–1120.  
  60. 60.
    Ahmad S, Mu X, Yang F, Greenwald E, Park JW, Jacob E, Zhang CZ, Hur S (2018) Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172:797–810.  
  61. 61.
    Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–289.  
  62. 62.
    Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, Grishin NV, Chen ZJ (2012) Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36:959–973.  
  63. 63.
    Cordaux RBM (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703.  
  64. 64.
    Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA, Jenkinson EM, Bacino CA, Battini R, Bertini E, Brogan PA, Brueton LA, Carpanelli M, De Laet C, de Lonlay P, del Toro M, Desguerre I, Fazzi E, Garcia-Cazorla A, Heiberg A, Kawaguchi M, Kumar R, Lin JP, Lourenco CM, Male AM, Marques W Jr, Mignot C, Olivieri I, Orcesi S, Prabhakar P, Rasmussen M, Robinson RA, Rozenberg F, Schmidt JL, Steindl K, Tan TY, van der Merwe WG, Vanderver A, Vassallo G, Wakeling EL, Wassmer E, Whittaker E, Livingston JH, Lebon P, Suzuki T, McLaughlin PJ, Keegan LP, O'Connell MA, Lovell SC, Crow YJ (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248.  
  65. 65.
    Fisher AJ, Beal PA (2017) Effects of Aicardi-Goutières syndrome mutations predicted from ADAR-RNA structures. RNA Biol 14:164–170.  
  66. 66.
    Morse DP, Aruscavage PJ, Bass BL (2002) RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA. Proc Natl Acad Sci U S A 99:7906–7911
  67. 67.
    Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1101–1105
  68. 68.
    Solomon O, Di Segni A, Cesarkas K, Porath HT, Marcu-Malina V, Mizrahi O, Stern-Ginossar N, Kol N, Farage-Barhom S, Glick-Saar E, Lerenthal Y, Levanon EY, Amariglio N, Unger R, Goldstein I, Eyal E, Rechavi G (2017) RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat Commun 8:1440.  
  69. 69.
    Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, Levanon EY (2014) A-to I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24:6876–6884.  
  70. 70.
    Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, Macia A, Crow YJ, Muotri AR (2017) Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21:319–331
  71. 71.
    Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200.  
  72. 72.
    Xiang JF, Yang Q, Liu CX, Wu M, Chen LL, Yang L (2018) N6-Methyladenosines modulate A-to-I RNA editing. Cell 69:126–135.  
  73. 73.
    Roth SH, Danan-Gotthold M, Ben-Izhak M, Rechavi G, Cohen CJ, Louzoun Y, Levanon EY (2018) Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep 23:50–57.  
  74. 74.
    Quinones-Valdez G, Tran SS, Jun HI, Bahn JH, Yang EW, Zhan L, Brümmer A, Wei X, Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Xiao X (2019) Regulation of RNA editing by RNA-binding proteins in human cells. Commun Biol 2:19.  
  75. 75.
    Orlowski RJ, O’Rourke KS, Olorenshaw I, Hawkins GA, Maas S, Laxminarayana D (2008) Altered editing in cyclic nucleotide phosphodiesterase 8A1 gene transcripts of systemic lupus erythematosus T lymphocytes. Immunology 125:408–419.  
  76. 76.
    Shallev L, Kopel E, Feiglin A, Leichner GS, Avni D, Sidi Y, Eisenberg E, Barzilai A, Levanon EY, Greenberger S (2018) Decreased A-to-I RNA editing as a source of keratinocytes’ dsRNA in psoriasis. RNA 24:824–840.  

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  • Loredana Frassinelli
    • 1
  • Silvia Galardi
    • 1
  • Silvia Anna Ciafrè
    • 1
  • Alessandro Michienzi
    • 1
    Email author
  1. 1.Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly

Personalised recommendations